

Towards Autonomic Management of NASA Missions

C.A. Rouff1 M.G. Hinchey2 J.L. Rash2 W.F. Truszkowski2 R. Sterritt3

1SAIC
Advanced Concepts B.U.

McLean, VA, USA
rouffc@saic.com

2NASA Goddard Space Flight Center
Greenbelt, MD, USA

{michael.g.hinchey, james.l.rash,
walter.f.truszkowski}@nasa.gov

3School of Computing
University of Ulster

Northern Ireland
r.sterritt@ulster.ac.uk

Abstract

Increasingly, NASA will rely on autonomous systems
concepts, not only in the mission control centers on the
ground, but also on spacecraft and on rovers and other
assets on extraterrestrial bodies to achieve the full range
of advanced mission objectives. While autonomy cost-
effectively supports mission goals, autonomicity supports
survivability of remote missions, especially when human
tending is not feasible. Analysis of two prototype NASA
agent-based systems and of a proposed mission involving
numerous cooperating spacecraft illustrates how
autonomous and autonomic system concepts may be
brought to bear on future space missions.

1. Introduction

With NASA’s renewed commitment to outer space
exploration, greater emphasis is being placed on both
human and robotic exploration. Even when humans are
involved in the exploration, human tending of assets
becomes cost-prohibitive or is not feasible. In addition,
certain exploration missions will require spacecraft that
will be capable of venturing where humans cannot be sent.

Until the mid-1980s, all space missions were operated
manually from ground control centers. The high costs of
satellite operations prompted NASA and others to begin
automating as many functions as possible. In our context,
a system is autonomous if it can achieve its goals without
human intervention. A number of more-or-less automated
ground systems exist today, but work continues towards
the goal of reducing operations costs to even lower levels.
Cost reductions can be achieved in a number of areas.
Greater autonomy of satellite ground control and
spacecraft operations are two such areas. Autonomy is
increasingly seen as a critical approach for all missions.

Though autonomy will be critical for future missions, it
is also necessary that these missions have autonomic
properties. Autonomy alone, absent autonomicity, will
leave the spacecraft vulnerable to the harsh environment
in which they have to work and most likely performance
will degrade, or the spacecraft will be destroyed or will

not be able to recover from faults. Ensuring that
exploration spacecraft have autonomic properties will
increase the survivability and therefore the likelihood of
success of these missions.

NASA needs autonomicity in its future missions to
ensure they can operate on their own to the maximum
extent possible without human intervention or guidance.
A case can be made that all of NASA’s future systems
should be autonomic, and exhibit the four key properties
of autonomic systems: self-configuring, self-optimizing,
self-healing and self-protecting [1,13]. The following
discusses the need for each of these autonomic properties
in NASA missions.

2. Overview of Two Agent-Based Systems

NASA GSFC has played a leading role in the

development of agent-based approaches to realize
NASA’s autonomy goals. Agents in the Lights Out
Ground Operations System (LOGOS) acted as surrogate
human controllers and interfaced with legacy software that
controllers normally used, and with humans. Based on the
success of this first prototype, development began on
ACT, an environment in which richer agent and agent-
community concepts were developed through detailed
prototypes and operational ground-based and space-based
scenarios.

2.1 LOGOS

LOGOS is a proof-of-concept system consisting of a
community of autonomous software agents that cooperate
in order to perform functions previously performed by
human operators who used traditional software tools such
as orbit generators and command sequence planners. The
agents were developed in Java and used an in-house
software backplane for communication between the
agents. The LOGOS community architecture is shown in
Figure 1. LOGOS is made up of ten agents, some that
interface with legacy software, some that perform services
for the other agents in the community, and others that
interface with an analyst or operator. All agents have the
ability to communicate with all other agents in the

community. A more detailed description of LOGOS is
given in [12].

The System Monitoring and Management Agent
(SysMMA) maintains a list of all agents and their
addresses in the community and provides their addresses
to other agents requesting services. When started, each
agent registers its capabilities with SysMMA and requests
other agent addresses whose services it needs.

2.2 ACT

The motivation behind ACT was to develop a more

flexible architecture than LOGOS for implementing a
wide range of intelligent or reactive agents. After
developing ACT, sample agents were built to simulate
ground control of a satellite constellation mission as a
proof of concept. Agents in ACT are built using a
component architecture, where a component can be easily
swapped in and out for easy removal of unneeded
components for reactive agents and the inclusion of the
necessary components to implement intelligent agents. It
also allows for new technologies to be added as they
become available without affecting previously
implemented components. A simple (reactive) agent can
be designed by using a minimum number of components
that receive percepts (inputs) from the environment and
react according to those percepts. A robust agent may use
more complex components that allow the agent to reason
in a deliberative, reflexive, and/or social fashion. The
following are the components of ACT.

Modeler: The modeling component maintains the
domain model of an agent, which includes models of the
environment, other agents, and the agent itself. The
Modeler is also responsible for reasoning with the models
to act proactively and reactively with the environment and
events that affect the model’s state.

Reasoner: The Reasoner component works with
information in its local knowledge base as well as model
and state information from the Modeler to make decisions
and formulate goals for the agent. Currently, the Reasoner
works more in a reactive manner.

Planner/Scheduler: The Planner/Scheduler component
is responsible for any agent-level planning and
scheduling. The planning component receives a goal or
set of goals to fulfill in the form of a plan request. This
typically comes from the Reasoner component, but may
be generated by any component in the system.

Agenda/Executive: The Agenda and the Executive
work together to execute the plans developed by the
Planner/Scheduler. The Executive executes the steps it
receives from the Agenda. If the preconditions are met,
the action is executed. When execution finishes, the
Executive evaluates the post-conditions, and generates a
completion status for that step. The completion status is
then returned to the Agenda.

Agent Communications: The agent communication
component is responsible for sending and receiving
messages to/from other agents. The component takes an
agent data object that needs to be transmitted to another
agent and converts it to a message format understandable
by the receiving agent.

Perceptors/Effectors: The Perceptors are responsible
for monitoring the environment for the agent. Any data
received by the agent from the environment, other than
agent-to-agent messages, enters through Perceptors. The
Effector is responsible for effecting or sending output to
the agent's environment. Any agent output data, other
than agent-to-agent messages, leaves through Effectors.

Agent Framework: The framework provides the base
functionality for the components as well as the inter-
component communication facility. The framework allows
components to be easily added and removed from the

GenSAA/
Genie
I/F Agent

AGENT COMMUNITY

Log
I/F Agent

SysMM
Agent

FIRE
Agent

Pager
I/F Agent

User
I/F Agent

MOPSS
I/F Agent

DB I/F
Agent

Archive
I/F Agent

VisAGE
I/F Agent

LOG OS
UI USER

VisAGE

Pagi ng
System

MOPSS

GenSAA
Data Server

GenSAA/
Genie

Control
Center

Spacecraft

= Agent

= External
 System

= Data

Archive

LOGOS

LOGOS
DB

 Archive

Log

 Fig. 1 LOGOS agent community and legacy software.

agent while providing a standard communications
interface and functionality across all components.

3. ANTS: A Concept Mission

The NASA Autonomous Nano-Technology Swarm

(ANTS) mission [9,10] will be made up of swarms of
autonomous pico-class (approximately 1kg) satellites that
will explore the asteroid belt. There will be
approximately 1,000 spacecraft involved in the mission.
Approximately 80 percent of the spacecraft will be
workers (or specialists) that will have a single instrument
onboard. Some will be coordinators (called leaders) that
will have rules that decide the types of asteroids and data
the mission is interested in and will coordinate the efforts
of the workers. The third type of spacecraft are
messengers and will coordinate communications between
the workers, leaders and Earth. Each worker spacecraft
will examine asteroids it encounters and send messages
back to a coordinator that evaluates the data and sends
other spacecraft to the asteroid if necessary.

This mission will involve a high degree of autonomy,
and autonomic properties will enhance its survivability.
To implement this mission a heuristic approach is being
considered that uses an insect analogy of hierarchical
social structure based on the above spacecraft hierarchy.
A transport ship will assemble the spacecraft during the
journey to the asteroid belt and then release them upon
arrival. Sub-swarms will exist that will act as teams that
explore a particular asteroid based on the asteroid’s
characteristics.

Team leaders contain models of the types of science
they want to perform. Relevant goals are communicated
to the messenger spacecraft that then relay them on to the
worker spacecraft. The worker spacecraft then take
measurements of asteroids using their specialized
instrument until data matches the goal that was sent by the
leader. If the data matches the profile of the type of
asteroid that is being searched for, an imaging spacecraft
will be sent to the asteroid to ascertain the exact location
and to create a rough model prior to the arrival of other
spacecraft.

4. Autonomic Properties of LOGOS

Self-configuration. LOGOS self configures when the
GIFA agent receives signals from the GenSAA/Genie
ground station software that a spacecraft pass is about to
happen. When this occurs, the GenSAA/Genie Interface
Agent (GIFA) configures the system by waking up the
needed agents for the pass. For example, if there are no
anomalies, then the Fault Isolation and REsolution (FIRE)
agent is not needed and is not woken up. The same is true
for the visualization and the user interface agents. If there

is no user logged on, then those agents do not have to be
woken up for the spacecraft pass.

Self-optimization. LOGOS self-optimizes through
learning. One example of this is through the learning by
the FIRE agent when it does not know how to resolve an
anomaly, and must notify an analyst that it needs help.
After the analyst provides a set of commands to resolve
the anomaly, the FIRE agent stores those commands and
the anomaly in its knowledge base for future reference. A
second way that LOGOS self-optimizes is through the
user interface and visualization agents. These agents keep
track of which analyst looks at what data so that that
information would be pre-fetched and available to the
analyst when he or she logs on to the system.

Self-healing. LOGOS self-heals primarily through the
actions of the FIRE agent. The FIRE agent examines
anomalies that occur and then issues commands to
resolve/heal the anomalies based on its knowledge base.
It also self-heals through the intervention of the human in
the loop, who can fill in information when the FIRE agent
does not have the requisite knowledge to solve a problem.
The self-healing aspect of LOGOS was its primary
function and is what made the system lights-out.

Self-protecting. The self-protecting aspects of LOGOS
are limited. The self-protection is primarily performed by
the FIRE agent and the user interface agent (UIFA).
UIFA accomplilshes self-protection when it authenticates
a user logging on to the system. For the FIRE agent, self-
protection is accomplished when checking commands
entered by the analyst to ensure they do not harm the
spacecraft.

5. Autonomic Properties of ACT

Self-configuration. As an example of this property,

when ACT detects, from analysis of telemetry, that there
is a problem, the Contact Manager alters the current
satellite contact schedule to enable the problem to be
addressed. What is being reconfigured, in this case, is the
spacecraft functionality for managing communications
contacts with ground systems and controllers.

Self-optimization. As an example of this property,
consider what happens when a Proxy Agent determines
that a problem exists with its spacecraft. When this
situation arises, a replanning/rescheduling activity occurs
to optimize the behavior of the entire ACT system.

Self-healing. Consider what happens when a Proxy
Agent detects a problem with its associated spacecraft.
Following a diagnosis of the problem (which may involve
access to the human component of the ACT) corrective
actions, in the form of commands, are generated and made
ready for transmission to the affected spacecraft. This
problem-diagnosis/corrective-action cycle is a major part
of ACT’s self-healing capability.

It should be noted that the three autonomic responses
discussed above all stem from ACT’s determination that a
problem has occurred. In attending to the problem, ACT
reconfigures, tries to optimize its operations, and proceeds
to diagnose and solve the identified problem.

Self-protection. ACT is self-protecting in the sense
that it constantly monitors the spacecraft systems and
modifies its operations if a parameter ranges outside its
normal bounds. In addition, it also has self-protection
through validation of system commands to insure that
command sequences executed will not harm the spacecraft
or put it in a position where it could be harmed.

6. Autonomic Properties of ANTS

Self-configuration. As asteroids of interest are

identified, appropriate teams of spacecraft are configured
to realize optimal science operations at the asteroids.
When operations are completed, the team disperses for
reconfiguration at another asteroid. Reconfiguring may
also be required as the result of a failure or anomaly. The
loss of a given worker may result in the role of that worker
being performed by another. Loss of communication with
a worker may mean that the system has to assume loss of
the worker, and the role may be allocated to another
spacecraft. Loss of use of an instrument by a worker may
require the worker to take the role of a communication
device.

Self-optimization. Optimization of ANTS is
accomplished at the individual level as well as at the
system level. These optimizations are:
• Rulers learning about asteroids
• Messengers adjusting their position
• Workers learning about asteroids

Optimization at the ruler level is primarily through
learning. Over time rulers will be collecting data on
different types of asteroids and will learn the
characteristics of the types of the asteroids that are of
interest and the types of asteroids that are difficult to orbit
or observe. From this information, the system as a whole
is being optimized since time is not being wasted on
asteroids that are not of interest.

Optimization for messengers is achieved through
positioning. Messengers need to provide communications
between the rulers and workers as well as back to Earth.
This means that a messenger will have to be constantly
adjusting its position to balance the communications
between the rulers and workers and adjusting its position
to send data to Earth.

Optimization at the worker level is primarily through
experience gained with asteroids. As a worker observes
asteroids and builds up a knowledge base of the different
characteristics of asteroids, a worker may be able to
automatically skip over asteroids that are not of interest.

Self-healing. The view of self-healing here is slightly
different from that given in [1]. ANTS is self-healing not
only in that it can recover from mistakes, but self-healing
in that it can recover from failure, including damage from
outside force. In the case of ANTS, these are non-
malicious sources: events such as collision with an
asteroid, or another satellite, loss of connection, etc., will
require ANTS to heal itself by replacing one spacecraft
with another.

ANTS mission self-healing scenarios span the range
from negligible to severe. A negligible self-healing would
be where one member of a redundant set of gamma ray
sensors fails before a general gamma ray survey is
planned. In such a scenario, the self-healing behavior
would be the simple action of deleting the sensor from the
list of functioning sensors. At the severe end of the range,
an example scenario would arise when the team loses so
many workers it can no longer conduct science operations.
In this case, the self-healing behavior might be to advise
mission control and wait for instructions. In some
possible ANTS mission concepts, instead of “calling
home” for help, an ANTS team may only need to request
a replacement from another team.

ANTS individuals may also have self-healing
behaviors. For example, an individual may have the
capability of detecting corrupted code (software). In such
a case, self-healing behavior would result in the individual
requesting a copy of the affected software from another
individual in the team, which would enable it to restore
itself to a known operational state.

Self-protection. The self protecting behavior of the
team will be interrelated with the self-protecting behavior
of the individual members. The anticipated sources of
threats to ANTS individuals (and consequently to the team
itself) will be collisions and solar storms.

Collision avoidance through maneuvering will be
limited because ANTS individuals will have limited
ability to adjust their orbits and trajectories, since thrust
for maneuvering is obtained from solar sails. Individuals
will have to coordinate their orbits and trajectories with
other individuals to avoid collisions. The main self-
protection mechanism for collision avoidance is achieved
through planning. The ruler’s plans involve constraints
that will result in acceptable risks of collisions between
individuals.

Another possible ANTS self-protection mechanism
could protect against effects of solar storms. Charged
particles from solar storms could subject individuals to
degradation of sensors and electronic components. When
the ruler recognizes that a solar storm threat exists, the
ruler would invoke its goal to protect the mission. In
addition to its own protection, part of the ruler’s response
would be to give workers the goal to protect themselves.

As noted in the section on self-configuring behavior,
after-effects of protective action will, in general,

necessitate ANTS self-reconfiguration. For example, after
solar sails had been trimmed for the storm blast of solar
wind, individuals will have unplanned trajectories, which
will necessitate trajectory adjustments and replanning and
perhaps new goals. Further, in case of the loss of
individuals due to damage by charged particles, the ANTS
self-healing behavior and the self-optimizing behavior
may also be triggered. Thus, there is an interrelatedness
of the self-protecting behaviors of the ANTS team and the
ANTS individuals.

7. Conclusions

NASA missions represent some of the most extreme
examples of the need for survivable systems that cannot
rely on support and direction from humans while
accomplishing complex objectives under dynamic and
difficult conditions. Future missions will embody greater
needs for longevity in the face of significant constraints, in
terms of cost and the safety of human life. Future
missions also will have increasing needs for autonomous
behavior not only to reduce operations costs and
overcome limitations of communications (signal
propagation delays and low data rates), but also to
overcome the limitations of humans to perform long-term
space missions. There is an increasing realization that
future missions must be not only autonomous, but also
exhibit the properties of autonomic systems for the
survivability of both individuals and systems.

As described, the LOGOS and ACT architectures
provide for a flexible implementation of a wide range of
intelligent and autonomic agents. The ACT architecture
allows for easy removal of components unneeded for
reactive agents, and the inclusion of the necessary
components to implement intelligent and autonomic
agents. It is also flexible so that additional unforeseen
needs can be satisfied by new components that can be
added without affecting previous components.

Acknowledgements

This work was supported in part by the NASA Office

of Safety and Mission Assurance (OSMA) Software
Assurance Research Program (SARP) and managed by the
NASA Independent Verification and Validation (IV&V)
Facility, and by NASA Headquarters Code R. And at the
University of Ulster by the Computer Science Research
Institute (CSRI) and the Centre for Software Process
Technologies (CSPT) which is funded by Invest NI
through the Centres of Excellence Programme, under the
EU Peace II initiative.

References

[1] R. Murch, Autonomic Computing, IBM Press,

2004.
[2] C. Rouff, A. Vanderbilt, M. Hinchey, W. Truszkowski,

and J. Rash. Properties of a Formal Method for
Prediction of Emergent Behaviors in Swarm-based
Systems. 2nd IEEE Int. Conf. Software Engineering and
Formal Methods. Beijing, China, 26-30 Sept., 2004.

[3] W. Truszkowski, and C. Rouff, An Overview of the
NASA LOGOS and ACT Agent Communities, 5th
World Multiconference on Systemics, Cybernetics, and
Informatics, Orlando, Florida, July 22-25, 2001.

[4] W. Truszkowski and H. Hallock, Agent technology from
a NASA perspective. CIA-99, 3rd Int. Workshop on
Cooperative Information Agents, Springer-Verlag,
Uppsala, Sweden, 31 July-2 August 1999.

[5] J. Ferber, Multi-agent systems, An introduction to
distributed artificial intelligence. Addison-Wesley,
1999.

[6] M. Wooldridge, Intelligent Agents, in Multiagent
Systems, Gerhard Weiss, Ed. MIT Press, 1999.

[7] P. Hughes, G. Shirah, and E. Luczak, Advancing
Satellite Operations with Intelligent Graphical
Monitoring Systems, Proc. AIAA Computing in
Aerospace Conference, San Diego, CA, Oct. 19-21,
1993.

[8] W. Truszkowski and C. Rouff. A Process for
Introducing Agent Technology into Space
Missions.Proc. IEEE Aerospace Conference, March 11–
16, 2001.

[9] P. E. Clark, S. A. Curtis, and M. L. Rilee, ANTS:
Applying a New Paradigm to Lunar and Planetary
Exploration, Proc. Solar System Remote Sensing
Symposium, Pittsburg, 2002.

[10] S. A. Curtis, J. Mica, J. Nuth, G. Marr, M. Rilee, and M.
Bhat, ANTS (Autonomous Nano-Technology Swarm):
An Artificial Intelligence Approach to Asteroid Belt
Resource Exploration, Proc. International Astronautical
Federation, 51st Congress, October 2000.

[11] W. Truszkowski, J. Rash, C. Rouff and M. Hinchey,
Asteroid Exploration with Autonomic Systems, Proc.
11th IEEE Int. Conf. Engineering of Computer-Based
Systems (ECBS), Workshop on Engineering of
Autonomic Systems (EASe), Brno, Czech Republic, 24-
27 May 2004, pp 484-489.

[12] W. Truszkowski, J. Rash, C. Rouff and M. Hinchey,
Some Autonomic Properties of Two Legacy Multi-
Agent Systems - LOGOS and ACT, Proc. 11th IEEE
International Conference and Workshop on the
Engineering of Computer-Based Systems (ECBS),
Workshop on Engineering of Autonomic Systems
(EASe), Brno, Czech Republic, IEEE Computer Society
Press, 24-27 May 2004, pp 490-498.

[13] C. Rouff, M. Hinchey, J. Rash, W. Truszkowski and R.
Sterritt, Autonomic Properties of NASA Missions, Proc.
ICAC 2005, 2nd IEEE International Conference on
Autonomic Computing, Seattle, WA, 13-16 June 2005.

